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LETTER TO THE EDITOR 

Irreversible deposition on disordered substrates 

D MiloSeviCt and N M SvrakiCS 
t Faculty of Mining and Geology, Department of Physics, Universily of Belgrade, 
DjuSina 7, 11000 Belgrade, Yugoslavia 
t. Institute of Theoretical Physics, pp57. 11OOO Belgrade, Yugoslavia 

Received 6 July 1993 

Abstract. We report results of a Monte Carlo study of the kinetics of random sequential 
deposition of tine segments (mostly dimers) on the ID lattice substrate, already -pied 
with point-like quenched impurities at low concentration. The area covered by the placed 
objecb grows with time and finally reaches a jamming limit when no more deposition is 
possible. The jamming coverage values, obtained by numerical simulations, depend on the 
segment length and on the previous occupation of the substrate by impurities. The rate of 
late-stage deposition is not disturbed by presence of forbidden sites when the process of 
deposition starts ( r = O ) .  Numerical results, shown in semi-log scale, confirm that area 
coverage O(f) approaches the jamming limit e(-) exponentially, with the same exponent 
factor -1  multiplying scaled time, as in the case of random sequential deposition of line 
segments on the clean I D  lattice (initially non-ormpied). 

Irreversible deposition, or random sequential adsorption (RSA) is a process in which 
objects of finite size are randomly deposited on a substrate. The overlapping of 
deposited objects is not permitted. The relaxation time of placed objects is much 
longer than the time needed for the system to reach saturation. Therefore objects stay 
permanently fixed, once deposited. The dominant effect in RSA is the blocking of the 
available substrate area by the already deposited particles. In earlier studies this 
problem was defined as 'the car parking problem [l]. The quantity of interest is the 
relative coverage e@), which is the fraction of the substrate area covered by the 
adsorbed particles. The kinetics of the process of RSA is characterized by the time 
evolution of the coverage. Due to the blocking effect, the jammingcoverage e( m) (in 
I-+ m limit) is smaller than 1, which is close to the packing value. The only exception 
is deposition of point-like objects, when jamming coverage reaches unity. This is a 
non-Markovian process and therefore mean-field theory cannot be used, except for 
very early times, when e(t) = f .  

Experimental studies [2-71 include processes with relaxation times much longer 
than the formation time of deposites, e.g. adhesion of latexes [2]. proteins [4] and 
colloidal particles [7] on homogeneous substrates. In theoretical studies of RSA, which 
include Monte Carlo simulations [ll, 121, both continuous and discrete models were 
analysed. Analytical results are also available [13] for onedimensional models. In 
such studies, it was shown that the late-stage deposition kinetics follows a power law 
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for continuous models! For discrete models the late stage jamming coverage is 
approached exponentially [lo-121, i.e. 

e(t)=O(m)-A exp (-k) 
where A and U are parameters which may depend on the shape, size etc. of the 
adsorbing object, and this is in agreement with analytical results [13]. 

In the present work we study a single-layer random sequential deposition of line 
segments on a ID lattice initially and randomly occupied with point-like quenched 
impurities at low concentration. The length of the line segment k-mers arc integral 
multiples of the lattice unit k =  LIN, where L is the length of the chain and N is the 
number of points. As N>>k we can neglect finite-size effects [ lo]  and take periodic 
boundary conditions. The Monte Carlo procedure goes as follows: we take ID lattice 
of size L with randomly quenched point-like impurities and line segments of length k 
(in lattice units), and randomly select one of the N lattice points. If the chosen site is 
already occupied, the attempt is abandoned and a new site is selected. If the site is 
unoccupied, we l ix one end of the line and randomly pick one of two possible 
directions and search whether all successive k sites are unocuppied. If so, we occupy 
these k sites, deposit the segment and increase the number of occupied sites by k.  If 
the attempt fails (it is irrelevant whether it was because some of the k sites were 
occupied by impurities or by an earlier deposited segment) a new site is selected. The 
time is counted for the number of attempts to select a lattice site and scaled by the 
total number of ID lattice sites N .  Simulation ends when each of the N sites are 
randomly selected once and no sites are unoccupied, except blocked ones. 

Two results of these simulations are the focus of our interest. In the first place, we 
compare graphs drawn in the semi-log scale (Figures 2 and 3) for the purpose of 
investigation of the rate of late-stage deposition of dimers on a ID lattice with 
impurities. The results shown in the figures confirm that relative area coverage B(t) of 
the I D  discrete substrate with point-like impurities approaches the jamming limit e( m )  
exponentially. Exponent factor multiplying scaled time is -1, as in the case of random 
sequential deposition of line segments on clean ID lattices [lo]. In figure 1 we present 
the results of simulation of deposition of dimers on a ID lattice substrate, with 10% 
point-like impurities and without impurities. Results of the same simulations are 
shown in figure 2 in semi-log scale. It is obvious that the lines are parallel, with slope 
- 1 .  It is also important to say that coverage includes deposited dimers and point-like 
impurities, and therefore, in the case of deposition with 10% of the substrate already 
occupied by impurities, coverage starts with value O(O)=O.l  (figure 1). Lines corre- 
sponding to simulations with 2%, 4%, 6% and 8% impurities lie between these two 
shown in figure 2. In figure 3. we present In(O(m)-B(r)) versus scaled time r for 
deposition of line segments of length k = 2 ,  k = 3  and k = 4  on a ID lattice with 2% 
point-like impurities. The exponent factor multiplying scaled time is - 1  in all cases. 
This means that, in the presence of quenched impurities, the kinetics of RSA is not 
disturbed in the late-time regime. 

The next parameter we are interested in is jamming coverage, depending on 
concentration of quenched impurities. Numerical results are shown in table 1 and 
figure 4. As the relative concentration of impurities p increase, e,( m) decrease and 
reach a minimum value for p between 0.13 and 0.14 (see solid curve on figure 4). For 
increased concentrations, jamming coverage grows and forp = 1 reaches unity. This is 
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Figmc I .  Relauve coverage O(r) versus xaled hme r for deposition of dimen on a ID 
lattice Line uiyts from O(0) =O. which corresponds 10 dcposttlon on a clean lanice. The 
other one. starhng lmth O(O)=O.I .  mnesponds IO deposition on a ID latticc with 10% 
point-like quenched impurities. 

Flgure2. As figure 1 on semi-log scale 
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Flgure3. The plot of In(O(-O(r)) as a function of I for deposition of line segments of 
length k =2, k = 3 and k = 4 (from top to bottom) on a ID lattice with 2% of quenchcd 
point-like impurities, 

Figurr4. lamming limit values e,( m) WRUS concentration of point-like impuritiesp on a 
ID lattice. The solid line is for quenched point-Like impurities and the dotted line 
corresponds with aMealed ones. 
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Table 1. Jamming coverage values for deposition of dimen on a ID lattice with different 
concentrations of quenched point-like impurities. 

Yo O(=J) 

0 0.8647 
2 0.8622 
4 0.8640 
6 0.8585 
8 0.8573 

10 0.8565 
13 0.8564 
14 0.8564 
U) 0.8595 
30 0.8726 
40 0.8948 

a trivial result because all sites are occupied by impurities. It will be interesting to 
compare these results with jamming coverage values for different concentrations of 
annealed point-like impurities (dotted curve on figure 4.) Systems with annealed 
impurities are trivial, because constant drifting of impurities enables deposition of the 
same number of dimers as in the case of a clean substrate, but a larger number of 
attempts are expected. Therefore, for annealed point-like impurities Sp( m) = So( m )  + 
p for p<0.1354 and O P ( m ) =  1 forpz0.1354. 

An interesting result of these simulations is that the value of the relative 
concentration p of quenched impurities, where jamming coverage has a minimum 
value, is probably the same as the value of relative concentration of annealed 
impurities where jamming coverage reaches unity. That value is equal to the number 
of blocked sites in the case of RSA of dimers on a clean substrate. In the numerical 
results shown in table 1 the fourth decimal point is relevant. We repeated the 
simulations with a different random number generator and A@(-) =O.OOOl. 

Some efforts to find an analytical solution for RSA in ID with impurities have been 
-made [9, IO], but they fail in predicting minimum values of e,( m )  as a function of 
relative concentration of impurities. Generally, the presence of impurities (both 
quenched and annealed) change initial conditions in such a way that numerical 
methods of solving rate equations 19, 101 are probably the only ones possible. In 
summary, we performed a Monte Carlo simulation of RSA of line segments on the ID 
lattice, with some sites previously occupied by quenched point-like impurities. An 
exponential approach to the jamming limit is obtained, with the same exponential 
factor -1 multiplying the scaled time in all cases. The jamming coverage value is 
calculated for various concentrations of point-like impurities. The minimum value is 
obtained for the relative concentration of quenched impurities that corresponds with 
the number of blocked empty sites in random sequential deposition of dimers on a 
clean substrate. 
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